23) 3 Calculus AB	83) $f(1)=3.083$
24) 2	$f(2)=-2.667$
25) \varnothing	By the intermediate value
26) 2	theorem, $f(x)=0$ on [1,2]
59) nonremovable on \mathbb{Z}	91) $f(3)=11$
60) nonremovable on \mathbb{Z}	93) $f(2)=4$
63) 7	95) a) limit D.N.E. at $x=c$
65) 2	b) $f(c)$ is undefined
67) $a=-1, b=1$	c) $f(c)$ does not equal the
69) continuous on \mathbb{R}	limit as $x \rightarrow c$
71) nonremovable at $x= \pm 1$	d) limit D.N.E. at $x=c$
77) \mathbb{R}	96) sketches will vary
78) $[-3, \infty)$	It is not continuous because
79) \mathbb{R} except $\{2+4 n, n \in \mathbb{Z}\}$	the right and left limits differ No, it will be discontinuous
80) $(0, \infty)$	97) No, it will be discontinuous when $g=0$.
107) $s(t)=$ position up and $r(t)=$ position down. Let $z=$ height of summit.	
let $\quad f(t)=s(t)-r(t)$	
Since he leaves at time $t=0, s(0)=0$	
Since it takes him 20 minutes to the summit, $s\left(\frac{1}{3}\right)=z$.	
Saturday, he leaves at the same time, so at $t=0, r(0)=z$.	
Since it takes him 10 minutes to get back, $r\left(\frac{1}{6}\right)=0$	
Since he is back to ground level, at $r\left(\frac{1}{3}\right)=0$ still.	
For $f(t)$ to equal $0, s(t)$ must equal $r(t)$ at some time t.	
Unless he can teleport, $f(t)$ must be continuous.	
Then, $f(0)=-z$ and $f\left(\frac{1}{3}\right)=z$. Since f is continous, and f changes from positive to negative, then $f=0$ at some time t and $s(t)=r(t)$ at that time	

not continuous at b

b) $g(x)= \begin{cases}\frac{x}{2}, & x \in[0, \mathrm{~b}] \\ \mathrm{b}-\frac{x}{2}, & x \in(\mathrm{~b}, 2 \mathrm{~b}]\end{cases}$
continuous

25)

$$
\begin{aligned}
& \lim _{x \rightarrow 3}(2-[\llbracket x]) \\
& 2-[[-3.1]]=6 \\
& 2-[[-2.9]]=5
\end{aligned}
$$

63)

$$
\begin{aligned}
& f(x)= \begin{cases}3 x^{2} & x \geq 1 \\
a x-4 & x<1\end{cases} \\
& f(1)=3(1)^{2}=3 \\
& a x-4=3 \\
& a x=7 \\
& a(1)=7 \\
& a=7
\end{aligned}
$$

$$
\text { 67) } \left.\begin{array}{rl}
F(x) & = \begin{cases}2 & x \leqslant-1 \\
\frac{a x+b}{-2} & -1<x<3\end{cases} \\
a(-1)+b=2 & a(3)+b=-2 \\
-a+b=2 \\
-3 a-b & =2 \\
\hline-4 a \quad=4 \\
a & (-1) \\
b=1
\end{array}\right]
$$

